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Exponent 2
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Figure 9
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Exponent 2
Threshold: 13.0 dB
Antenna Pattern: 360 degree beam.
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Figure 11
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1bresbo1d: 13.0 dB
Antenna. Pattern: 360 degree beaJn
Coverage: 97.92 percent

Figure 13
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These predicted interference effects flow from the use of the free-space propagation
model. If we assumed a higher rate of signal attenuation (as is the case for terrestrial
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paging systems), we would see far less interference and far greater coverage. Note also
that in many of the potential terrestrial interference conditions, the condition for
successful simulcasting is met.

Figure 21 displays the coverage that would be provided to aircraft flying at 20,000 feet
from the same array of stations as in Figure 19, but assuming an inverse fourth-power
propagation law. As you can see the coverage is substantially better.
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The figures below show the same trade-off between coverage at higher and lower aircraft
altitudes. Figure 22 shows the coverage that would be obtained at 20,000 feet for this
specific transmitter spacing (which is almost optimal for 20,000 feet). Figure 23 exhibits
the coverage that the same array of transmitters would provide to aircraft at 40,000 feet.
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All of the above analyses have assumed that the receiver was equally sensitive in all
directions. But, theory and experience indicate that pagers in aircraft have directional
reception patterns. What effect will this have on coverage? We can do a pair of quick
mental experiments that indicate that such directionality should increase coverage.
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First, consider the case of a steerable high-gain directional antenna at the pager. This
antenna could be pointed at one of the paging transmitters above the horizon. The
antenna gain would be sufficient to eliminate interference from the other transmitters.
In this circumstance, the directional antenna improves coverage by helping reject
interference. However, the assumption that the directional antenna could be pointed to
the desired transmitter is unrealistic.

Second, consider the case of a high-gain antenna pointing at random at a line of
transmitters. If the beamwidth of the antenna is matched to the separation of the
antennas, it will frequently "see" one antenna and will never see two. Coverage would be
quite good.

We can modify our model to take into account receiving system directivity. In particular,
let us assume that the receiver pattern forms a bow-tie-like pattern with two 90 degree
fans of low relative attenuation off to the sides of the aircraft and 20 dB greater
attenuation towards the front and back of the aircraft.

Figure 24 shows the coverage that would be expected from an array of omni-directional
transmitters to directionalized receiving systems for an aircraft at 5,000 feet. This
corresponds to the case studied earlier with omni patterns in Figure 16. The assumed
receiving pattern is shown in the figure. A nominal gain of 0 dB is applied to all signals
coming in on two fan-shaped beams. Signals from all other directions have a relative
gain of -20 dB. Notice that coverage has increased from 55 percent to 68 percent. At
this altitude (and with the assumed transmitter sites), directionality significantly improves
system performance.
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Notice that coverage improves when we assume the use of directional antennas. Notice
also that, when the aircraft is sufficiently high to see several transmitters, coverage is still
relatively low. I..

One approach to improving coverage is to stagger the transmissions in each cell. The
analysis of such patterns is quite similar to the analysis of cellular reuse patterns in
cellular radio. The biggest difference between this problem and the cellular problem is
the effect of altitude. Wider separation of stations results in a greater unserved volume
at lower altitudes. For example, if we were to stagger the transmissions in a seven-cell
pattern, the stations could be arranged to provide essentially total coverage for a very
large volume of air space. If transmitters were set up on a hexagonal array, they could
provide coverage to essentially all aircraft at altitudes between 1,500 feet and 15,000 feet
and to many aircraft above 15,000 feet.

The major problem with a seven-fold staggered transmission pattern is that it reduces
capacity by the same amount. This approach might be quite useful in the early
operation of such a system if it could be shown to reduce operational costs.

Another approach to reuse is to consider transmitters located in the center of a
hexagonal array as before, but to assume that they use directional antennas to illuminate
sectors at a time. For example, with an 180 degree fan, two transmissions would be
required (one to the "north" and one to the "south"). Figure 25 through Figure 28
illustrate the use of some of these directional illumination patterns. In looking at these
figures, the reader must take into account that the coverage in each cell would be the
sum of the coverage from transmissions in multiple sectors and that we are looking only
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at the effects of a transmission in a single direction. Notice that, as we narrow the
beamwidth, high-altitude coverage improves substantially.
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The following figures illustrate the effect of making the receiving system more
directional. This might be accomplished in cooperation with the airlines. Windows on
one side of the aircraft could be coated with a conductive mesh, reducing radio wave
penetration on that side of the aircraft. Figure 29 through Figure 32 display the results
of an analysis of such a configuration with different combinations of transmit antenna
pattern and altitude.
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POLICY CONCLUSIONS

The foregoing discussion shows the requirement for spectrum coordination over a very
wide area. The radio horizon for an aircraft at 40,000 feet is almost 300 miles. Thus, an
aircraft at this altitude can receive signals from transmitters located in an area of about
one-quarter million square miles. Yet the area of the continental U.S.' is only about
three million square miles. Given the need for coordination of transmitters that may
simultaneously illuminate aircraft, it is clear that dividing a nationwide paging band
among multiple licensees would lead to substantial practical problems in day to day
frequency coordination among licensees. This is a different argument, based on the
problems of spectrum management, from the argument that the nature of the market (air
travelers may be anywhere in the nation) requires a nationwide service. This is a
separate and different point. The technical characteristics of the service require
coordination of the operation of transmitters over vast distances-distances equal to a
significant fraction of the length or breadth of the continental U.S.

The same considerations also lead to a need to coordinate use with Canada and Mexico.
Ideally, the frequencies of interest would be used for a similar GAP service in those
countries. Alternatively, a non-conflicting use could be found for those frequencies.
Note that non-compatible systems operating along both borders could substantially
reduce the area (volume) served by such a system. Montreal is about 220 miles from
Boston (radio horizon at 24,000 feet) and Los Angeles is less than 180 miles from
Tijuana (radio horizon at 16,000 feet).

It should also be clear that substantial technical work needs to be done in order to
provide the most spectrum-efficient and cost-effective GAP service. In particular,
strategies for providing high-altitude coverage while maintaining good spectrum
efficiency are necessary.

FURTHER TECHNICAL ISSUES

A substantial technical analysis needs to be done. Among the issues where additional
study would appear to be helpful are:

• System interference issues;
• Characterization of pager operation within aircraft;
• Pager susceptibility to interference from simulcast pages. This analysis

should be sufficient to understand the required signal-to-noise ratio for
interfering signals from transmitters above the horizon at a mix of distances
from 30 to 200 or more miles;

• Techniques for making aircraft more hospitable components in receiving
systems. One such technique might be to cover windows on one side of the

C 7 The total area of the U.S. is 3,618,770. The area of Alaska is 591,004. The area of U.S. excluding
Alaska is 3,027,776 square miles. Statistical Abstract of the United States, 1990, p. 195.
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aircraft with a conductive coating. This would restrict paging signal
penetration to windows on the other side of the aircraft-making the
receiving system more directional. Another technique would be to put
repeaters inside the aircraft and mount an external antenna or antenna
system. A 10 mW transmitter at 30 meters provides a signal as strong as a
1000 W transmitter at six miles (without any allowance for aircraft
penetration). Such repeaters could be designed to operate only when
signal strength is sufficiently low so that the external signal would not
interfere with the repeatered signal inside the aircraft.

RELATED MARKETING ISSUES

There is a trade-off between low-altitude coverage and high-altitude coverage. By
separating stations, interference at higher altitudes can be reduced, but at the expense of
creating low altitude regions where coverage is poor. Such regions might be filled in
through the use of low-power transmission (say, one or 10 W) or the holes in coverage
might be accepted.

This problem should be thought through carefully from a marketing point of view. A
large portion of air travel consists of shorter trips (e.g., Washington to Philadelphia or
Dallas to Houston) where only a small portion of the flight time is spent above 10,000
feet. In contrast, the majority ofu:he time on longer transcontinental flights is spent at
higher altitudes. It may be the case that consumers who are frequently on these longer
trips make up a significant portion of the GAP service market. If so, the GAP system
should be designed to serve them well.

A system that has holes in its coverage may gain a bad reputation and find sales
suffering significantly. A better understanding of the needs of potential customers would
assist in designing a practical system. In particular, how should a system operator trade
off low-altitude coverage, high-altitude coverage and system cost?

n/e··ra
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